16t^2=52

Simple and best practice solution for 16t^2=52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16t^2=52 equation:



16t^2=52
We move all terms to the left:
16t^2-(52)=0
a = 16; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·16·(-52)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{13}}{2*16}=\frac{0-16\sqrt{13}}{32} =-\frac{16\sqrt{13}}{32} =-\frac{\sqrt{13}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{13}}{2*16}=\frac{0+16\sqrt{13}}{32} =\frac{16\sqrt{13}}{32} =\frac{\sqrt{13}}{2} $

See similar equations:

| 14=1x | | 22+74t=3 | | 52x+x=68 | | 3x5+2=8 | | 6+w=17 | | -0.5+2.5x+x=-1 | | 3^(2x-5)=17 | | 3(y-3)=8y-28 | | 3x^2=158 | | (a+28)+(2a)=180 | | a÷3=3 | | 2/3(6-9x)=18 | | (3x-6)(x+4)=3x^2+6x-24 | | (a+28)+(2a)=10 | | 13.01=2g+3.55 | | x÷3=21R2 | | x/10=4/2 | | 10x-5x=20+5 | | 1/9x^2-5/54x-2/18=0 | | 3{x}^{2}-2x+7=0 | | n+1=-9+4n | | 5)14=-6x—8x | | 9/49=n2 | | 7x=+9 | | 6-9x=5x-9x+4 | | -3(3m-10)-7=-5 | | 4)24=—3k—3k | | -1+8x+46+x=180 | | 2/3(9x-6)=15 | | -x+3=3(x-3) | | 2x/3=8x= | | 50x^2=x2+5 |

Equations solver categories